18禁黄无码免费网站高潮丨国产av天堂无码一区二区三区丨中国猛少妇色xxxxx丨无码网站天天爽免费看视频丨97国产精品人妻无码久久久

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > 在線照明注意事項(xiàng)

技術(shù)文章

在線照明注意事項(xiàng)

技術(shù)文章

In-line Illumination Considerations

In-line illumination is a unique style of lighting that incorporates the illumination into the optical train of the machine vision lens, usually by means of a fiber optic light guide or LED light source and a beam splitting optic. Although in-line illumination is not as bulky as diffuse axial illumination, and may be easier to integrate into a system that has tight space constraints, there are important optical differences a system designer must consider. In-line illumination is much more directional when compared to diffuse axial lighting, which, due to the chief rays being nearly parallel to the optical axis in object space, is one of the reasons that in-line illumination is widely incorporated with ecentric lenses (Figure 1). In comparison, diffuse axial lighting will project the illumination at a multitude of different angles, displaying ?different properties on the object and image planes.

Figure 1: Diagram of In-Line Illumination within a ecentric Lens

 

Vastly different results will also come from comparing in-line illumination to bright field illumination. Figure 2 shows a chrome on glass, positive USAF 1951 contrast target illuminated both with bright field illumination and with in-line illumination.

Figure 2: Chrome on Glass USAF 1951 Resolution Target with Bright Field Illumination (Figure 2a), and In-Line Illumination (Figure 2b)

 

The most immediate difference between the two types of illumination is the complete contrast reversal between the two images. Additionally, the defects in the target are more readily apparent in the bright field image, which, depending upon the application, can be either a positive or a negative effect. Interestingly, the highly reflective nature of the target yields about 10% better contrast for the in-line image when compared to the bright field image – the reason for this is explained below.

 

When to Use In-Line Illumination

When considering using in-line illumination, it is important to understand exactly where it is applicable and where it is not. In-line illumination is ideal for the inspection of specular or semi-specular objects, such as semiconductor wafers or CCDs, due to the nature of the rays on the illumination path. Using two different ecentric lenses, one with in-line illumination and one without, images of the same CCD demonstrate the ?differences between bright field illumination (using a ring light) and inline illumination. The images are shown in Figure 3.

Figure 3: Comparison of Brightfield Illumination (left) with In-line Illumination (right)

 

In-line illumination would be a better choice to inspect the wires along the edge of the CCD due to the higher, more even contrast between the wires and the rest of the CCD. As shown in Figure 4, the reason that the wires in Figure 3 appear bright using bright field illumination and dark using in-line illumination is due to the ray paths of the lighting. With bright field illumination, the rays are scattered into the lens, and with inline illumination, the rays are scattered away from the lens.

 

With bright field illumination, the rays originating from the ring light are reflected by the object into the lens. The reflections will vary based on the angle of the individual sources in the ring light as well as the angle of the wires themselves with respect to the CCD surface and the solder material at the tips, which is why the reflections have non-uniform pixel values along the length of the wire. Using in-line illumination, all of the rays are reflected by the object and scattered away from the lens such that none of the light that hits the wires is reflected back into the lens and onto the sensor. The more even contrast of the background, along with the stronger contrast of the wires, makes in-line illumination a better choice for the inspection of the wires than bright field illumination.

 

Comparison of Brightfield and In-line Illumination

Brightfield Illumination

In-line Illumination

Low Contrast

High Contast Wires

Bright Chip on Faceplate

Dark Chip on Faceplate

High Contrast Image

Even Illumination with Consistent Contrast between Features (red square)

 

If the CCD cover glass were to be inspected for digs or chips, in-line illumination would also be the more advantageous choice since the overall image has a much more even contrast. The dark chips shown using in-line illumination (a result of the light being scattered as shown in Figure 4) would appear at a much higher contrast to the busy CCD background than the chips shown in the high contrast image formed using a brightfield system, as demonstrated in Figure 3.

 

When Not to Use In-Line Illumination

Due to its multiple advantages, it is often believed that in-line illumination is always the superior choice for space-constrained systems. Unfortunay, it is not the best solution for objects that are optically diffuse or for objects requiring a large field of view. When used with diffuse objects, in-line illumination produces a hotspot on the image caused by the Lambertian (a nearly constant bidirectional reflectance distribution function) tendencies of the object, which is detrimental to any inspection system. Figure 4 shows an image of a diffuse object of wooden material both with (right image) and without (left image) in-line illumination.

Figure 4: Comparison of Ray Paths Using Brightfield Illumination (left) and In-line Illumination (right)

 

When the primarily Lambertian object is in-line illuminated, the image has a well-defined hotspot in the center of the field of view. This hotspot effectively washes out the desired contrast, yielding a contrast of about 70% for the brightfield image, and about 8% for the in-line illuminated image, with both contrast values taken at the center of the image.

 

There are, of course, other situations where in-line illumination is not the ideal option. When a large field of view is required, the étendue of the illumination system becomes a problem, in that spreading out the flux of the light over a large field inherently leads to a much less dense bundle of photons, and therefore has a negative impact on the throughput of the system as a whole. Imperfect light sources also significantly and negatively impact the performance of inline illumination systems with large fields of view, as the small imperfections are bolstered over the large projection in the object plane.

 

In-line illumination would be a better choice to inspect the wires along the edge of the CCD due to the higher, more even contrast between the wires and the rest of the CCD. As shown in Figure 2, the reason that the wires in Figure 1 appear bright using brightfield illumination and dark using in-line illumination is due to the ray paths of the lighting. With brightfield illumination, the rays are scattered into the lens, and with in-line illumination, the rays are scattered away from the lens.

Figure 5: Comparison of Wooden Object with Brightfield Illumination (left) and In-Line Illumination (right)

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
主站蜘蛛池模板: 在线精品亚洲一区二区小说| 大帝a∨无码视频在线播放| 另类 亚洲 图片 激情 欧美| 久久无码超清激情av| 又爆又大又粗又硬又黄的a片| 美女黄18以下禁止观看| 日本三级手机在线播放线观看| 国产美女亚洲精品久久久99| 动漫av一区二区在线观看| 日本一丰满一bbw| 国产乱码卡二卡三卡老狼| 无码喷水一区二区浪潮av| 亚洲精品无码av中文字幕电影网站| 手机看片久久国产永久免费| 天堂www中文资源| 亚洲一区av无码少妇电影| 日韩亚洲国产中文字幕欧美| 欧美日韩无砖专区一中文字| 精品国偷自产在线视频99| av天堂久久天堂色综合| 国产成人无码一区二区在线观看| 免费无码十八禁污污网站| 亚洲欧美自偷自拍视频图片| 久久亚洲精品国产亚洲老地址| 国产桃色无码视频在线观看 | 久久www成人看片免费不卡| 亚洲国产成人久久综合三区| 无码av无码天堂资源网影音先锋 | 亚洲精品国产自在现线看| 在线视频 一区 色| 亚洲国产精品无码久久电影| 亚洲中文字幕成人综合网| 中文字幕无码人妻波多野结衣| 日本熟妇人妻ⅹxxxx国产| 欧美亚洲亚洲日韩在线影院| 精品+无码+在线观看| 无码一区二区三区av在线播放| 美女裸体自慰在线观看| av无码天堂一区二区三区| 一本久道中文无码字幕av| 狠色狠色狠狠色综合久久|